Solution: All MA systems are stable; see
Section 7-4.5. All systems with geometric impulse responses with poles
inside the unit circle are stable; see Section 7-4.6.
Test 7.7
The $\displaystyle{{\bf z}}$-transform of $\{\underline{1},-2\}+(2)^n\;u[n]$ is:
The inverse $\displaystyle{\bf z}$-transform of $\displaystyle\frac{{\bf z}-1}{{\bf z}-2}$ is:
Solution: The same answer can be derived in
different ways and in different forms.
$\displaystyle\frac{{\bf z}-1}{{\bf z}-2}=\frac{{\bf z}}{{\bf z}-2}-\frac1{{\bf z}-2}$.
An inverse $\displaystyle{\bf z}$-transform gives $\displaystyle(2)^n\;u[n]-(2)^{n-1}\;u[n-1]$.
$\displaystyle\frac{{\bf z}-1}{{\bf z}-2}=1+\frac1{{\bf z}-2}$.
An inverse $\displaystyle{\bf z}$-transform gives $\delta[n]+(2)^{n-1}\;u[n-1]$. Same! (Try
it.)
Test 7.11
An LTI system has transfer function
$\displaystyle
{\bf H}
({\bf z})=\frac{({\bf z}-3)({\bf z}-4)}{({\bf z}-1)({\bf z}-2)}
$.
The difference equation for the system is:
An LTI system has transfer function
$\displaystyle
{\bf H}
({\bf z})=\frac{({\bf z}-3)({\bf z}-4)}{({\bf z}-1)({\bf z}-2)}
$.
The response of the system to input $x[n]=\{\underline{1},-3,2\}$ is:
An LTI system has transfer function
$\displaystyle
{\bf H}
({\bf z})=\frac{({\bf z}-3)({\bf z}-4)}{({\bf z}-1)({\bf z}-2)}
$. Its impulse response is
Solution: $$
\frac{{\bf H} ({\bf z})}{\bf z}=\frac{({\bf z}-3)({\bf z}-4)}{{\bf z}({\bf z}-1)({\bf z}-2)}=
\frac{6}{\bf z}-\frac{6}{{\bf z}-1}+\frac1{{\bf z}-2}.
$$
Then multiply by ${\bf z}$.
Computation of partial fraction residues:
$$
\frac{(0-3)(0-4)}{(0-1)(0-2)}=6;
\qquad
\frac{(1-3)(1-4)}{1(1-2)}=-6;
\qquad\frac{(2-3)(2-4)}{2(2-1)}=1.
$$
An inverse ${\bf z}$-transform gives $h[n]=6\delta[n]-6u[n]+(2)^n\;u[n]$.
Test 7.14
An LTI system has transfer function
$\displaystyle
{\bf H}
({\bf z})=\frac{({\bf z}-3)({\bf z}-4)}{({\bf z}-1)({\bf z}-2)}
$.
The response of the system to input $x[n]=(4)^n\;u[n]-(3)^n\;u[n]$ is:
$\to y(t)$, what is
the functional form of $y(t)$?
Solution: \begin{eqnarray*}
{\bf H} (e^{j\Omega}) &=&
\frac{1-3e^{-j\Omega}+e^{-j2\Omega}}{1-2e^{-j\Omega}+e^{-j2\Omega}}
=\frac{e^{j\Omega}-3+e^{-j\Omega}}{e^{j\Omega}-2+e^{-j\Omega}}
=\frac{2\cos(\Omega)-3}{2\cos(\Omega)-2}.
\\
{\bf H} (e^{j\pi/3}) &=& \frac{2(\frac1{2})-3}{2(\frac1{2})-2}=2.
\end{eqnarray*}
The output is $2\cos(\frac{\pi}{3}n)$.
Test 7.18
If $x(t)=\cos(\frac{\pi}{2}n)\to$
$y[n]-2y[n-1]+y[n-2]=x[n]-3x[n-1]+x[n-2]$
$\to y(t)$, what is
the functional form of $y(t)$?
Solution: \begin{eqnarray*}
{\bf H} (e^{j\Omega}) &=& \frac{1-3e^{-j\Omega}+e^{-j2\Omega}}{1-2e^{-j\Omega}+e^{-j2\Omega}}
=\frac{e^{j\Omega}-3+e^{-j\Omega}}{e^{j\Omega}-2+e^{-j\Omega}}
=\frac{2\cos(\Omega)-3}{2\cos(\Omega)-2}\;.
\\
{\bf H} (e^{j\pi/2}) &=& \frac{2(0)-3}{2(0)-2}=\frac3{2}\;.
\end{eqnarray*}
The output is $\frac3{2}\cos(\frac{\pi}{2}n)$.
Test 7.19
What are properties of the DTFS that are not true for the CTFS?
Solution: See Section 7-13.
Test 7.20
Compute the DTFS of $x[n]=\{\dots,
4,2,0,2,\underline{4},2,0,2,4,2,0,2,\dots\}$.
Solution: This is obvious by inspection, but
it can be computed as follows:
The form of the DTFS is
\begin{eqnarray*}
x[n] &=& {\bf x}_0+{\bf x}_1e^{j\pi/2n}
+{\bf x}_2e^{j\pi n}+{\bf x}_3e^{j3\pi/2n}.
\\
{\bf x}_0 &=& \frac1{4}(4+2+0+2)=2.
\\
{\bf x}_1 &=& \frac1{4}(4-j2+0+j2)=1.
\\
{\bf x}_2 &=& \frac1{4}(4-2+0-2)=0.
\\
x[n] &=& 2+e^{j\pi/2n}+e^{j3\pi/2n}=2+2\cos\left(\frac{\pi}{2}n\right),
\end{eqnarray*}
since $e^{j3\pi/2n}=e^{-j\pi/2n}$ and ${\bf x}_3={\bf x}_1^*=1$.
Test 7.21
If $x[n]=\{\dots,4,2,0,2,\underline{4},2,0,2,4,2,0,2,\dots\}\to$
Solution: The DTFS has the form
${\bf x}_0+{\bf x}_1e^{j\pi/2n}+{\bf x}_2e^{j\pi n}+{\bf x}_3e^{j3\pi/2n}$. ${\bf x}_0=2$.
$h[n]$ is a brick-wall lowpass filter with cutoff frequency
$\Omega_0=\frac{\pi}{3}<\frac{\pi}{2}$. Only ${\bf x}_0$ passes.
Test 7.22
If $x[n]=\{\dots,a,b,c,d,\underline{a},b,c,d,a,b,c,d,\dots\}\to$
Solution: The DTFS has the form
${\bf x}_0+{\bf x}_1e^{j\pi/2n}+{\bf x}_2e^{j\pi n}+{\bf x}_3e^{j3\pi/2n}$.
$h[n]$ is a brick-wall bandpass filter that passes
$\frac{2\pi}{10}<|\Omega|<\frac{4\pi}{10}<\frac{\pi}{2}\;$, so nothing passes.
Test 7.23
What are properties of the DTFT that are not true for the CTFT?
Solution: Keep (a) in mind when dealing with
discrete-time frequency $\Omega$.
Test 7.24
The DTFT ${\bf X} (e^{j\Omega})$ of $x[n]$ is related to:
If $x[n]=\{1,2,7,\underline{2},1\}$, then arg[$X(e^{j\Omega})]=$?
Solution: Let
$y[n]=\{1,2,\underline{7},2,1\}$. $y[n]$ is even.
Since $7>1+2+2+1$,
$\angle{\bf Y} (e^{j\Omega})]=0$.
Since $x[n]=y[n+1]$, $\angle{\bf X} (e^{j\Omega})=\angle{\bf Y}
(e^{j\Omega})+\Omega=\Omega$ using entry #2 of Table 7-7, which is
Solution:
\begin{eqnarray*}
{\bf X} [0] &=& (12+8+4+8)=32.
\\
{\bf X} [1] &=& (12-j8-4+j8)=8.
\\
{\bf X} [2] &=& (12-8+4-8)=0.
\\
{\bf X} [3] &=& (12+j8-4-j8)=8.
\end{eqnarray*}
Why are none of these complex numbers?
The periodic extension of $\{12,8,4,8\}$ is $\{\dots,
12,8,4,8,\underline{12},8,4,8,12,8,4,8,\dots\}$ is even.
Any Fourier transform of any kind of a real and even function is
itself real and even.