Solution:
$h(t)$ is a bandpass filter that
passes only
$\displaystyle
-0.4+0.5=0.1<|\omega|<0.4+0.5=0.9<1.
$ This excludes $\omega=0$ and both $\pi/3$ and $2\pi/3>1$.
Test 5.4
Let $x(t)$ be the periodic signal shown below:
$x(t)\to$
${\bf H} (\omega)=1-e^{-j3\omega}$
$\to$ ?
Solution:
All you need to know is that the
period of $x(t)$ is 3. Then
$\displaystyle
{\bf Y} (\omega)={\bf H} (\omega)\;{\bf X} (\omega)={\bf X} (\omega)-e^{-j3\omega}\;{\bf X} (\omega).
$
Then ${\cal F}^{-1}\to y(t)=x(t)-x(t-3)=0$!
Test 5.5
If $x(t)$ is a periodic signal with a period 0.5 s, what is
$y(t)$ of the operation $x(t)\to$
$\displaystyle h(t)=\frac{\sin(12t)}{\pi t}$
$\to y(t)$ ?
Solution:
Period $=0.5$ s$\to$ harmonics
$2,4,6,\dots{\rm Hz}=4\pi,8\pi,12\pi,\dots$ radians/s.
${\bf H} (\omega)=1$ for $|\omega|<12<4\pi$; 0 otherwise. Only constant
($\omega=0$) term $c_0$ passes.
Test 5.6
If $x(t)=\sin(t)+{1\over 3}\sin(3t)+{1\over
5}\sin(5t)+\cdots\;$, what is $y(t)$ of the operation
$x(t)\to$
What is the output $y(t)$ of the operation
$\displaystyle
x(t)=\cos\left(\frac\pi3\;t\right)\to
$
$\displaystyle
y(t)=\int_{t-6}^tx(\tau)\;d\tau$
$\displaystyle
\to y(t) ?
$
Solution:
The system has $h(t)=1$ for
0<t<6 and 0 otherwise. To find ${\bf H} (\omega)$:
Let $\tilde h(t)=1$ with $|t|<3$ or 0 otherwise.
Then from Eq. (5.88),
${\bf \tilde H}(\omega)=6{{\sin(3\omega)}\over{3\omega}}$
Then $h(t)=\tilde h(t-3)$ and ${\bf H}
(\omega)=6{{\sin(3\omega)}\over{3\omega}}e^{-j3\omega}$ and ${\bf H} (\pi/3)=0$!
The reason: the system integrates the cosine over a period, and this
integral is zero.
Solution:
Let $x(t)=\frac{\sin(\pi t)}{\pi t}$.
Then ${\bf X} (\omega)=1$ for $|\omega|$<$\pi$ and 0 otherwise.
By Parseval's theorem,
$\displaystyle
\int_{-\infty}^{\infty}|x(t)|^2\;dt
=\frac1{2\pi}\;\int_{-\infty}^{\infty}|{\bf X} (\omega)|^2\;d\omega=
\frac1{2\pi}\;\int_{-\pi}^{\pi}|1|^2\;d\omega=1!
$
Test 5.11
If $\displaystyle x(t)=\frac{\sin(2t)}{\pi t}$, then the energy of $d^2x/dt^2$
is:
Solution:
$\displaystyle
{\cal F}\{x(t)\} = 1{\rm for }|\omega|<2,
$
$\displaystyle
{\cal F}\left\{\frac{d^2x}{dt^2}\right\} = -\omega^2{\rm for }|\omega|<2.
$
By Parseval's theorem,
$\displaystyle
{\rm energy}={1\over{2\pi}}
\;\int_{-2}^2\left|-\omega^2\right|^2\;d\omega
=\frac{32}{5\pi}\;.
$
Test 5.12
The inverse Fourier transform of $\displaystyle 8j\omega\frac{\sin(4\omega)}{4\omega}$ is:
What is output $y(t)$ of the operation
$8\cos(2t)\to$
$h(t)=te^{-2t}\;u(t)$
$\to y(t)$?
Solution:
From entry #11 in Table 5-6,
$\displaystyle
{\cal F}\{te^{-2t}\;u(t)\}=\frac1{(j\omega+2)^2}.
$
Inserting $\omega=2$ gives
$\displaystyle
\frac1{(j2+2)^2}=\frac1{(2\sqrt{2}e^{j45^\circ})^2}=\frac1{8}e^{-j90^\circ }.
$
Then $y(t)=\left(\frac{1}{8}\right) 8\cos(2t-90^\circ)=\sin(2t)$.
Test 5.16
An LTI system has gain $|{\bf H} (\omega)|=1$ and phase $\angle[{\bf H}
(\omega)]=-2\omega$. The system is given by the relationship:
Solution:
${\bf H} (\omega)=e^{-j2\omega}$ which is
the frequency response of a delay by 2.
Test 5.17
An LTI system has frequency response $\displaystyle {\bf H}
(\omega)=\frac{j\omega-2}{j\omega+2}$. Which statement is true?
Solution:
$\displaystyle
{\rm Gain}=|{\bf H}(\omega)|
=\frac{|j\omega-2|}{|j\omega+2|}
=\frac{\sqrt{1+\omega^2}}{\sqrt{1+\omega^2}}=1.
$ This is called an all-pass system.
Test 5.18
Which of the following cannot be the phase response of an LTI
system?
Solution:
Consider each of the four candidate phase responses:
(a) LTI system $y(t)=x(t+3)$ has transfer function ${\bf H}
(\omega)=|{\bf H}(\omega)|e^{j\phi(\omega)}=e^{j3\omega}$.
Hence, the phase response is
$\displaystyle
\phi(\omega)=3\omega.
$
Since phase response belongs to a viable LTI system, it is not the
response to the posed question.
(b) The reversal property given by Eq. (5.130) requires that
the transfer function satisfy
$\displaystyle
{\bf H}(-\omega)={\bf H}^*(\omega),
$
which implies that $\phi(\omega)=-\phi(-\omega)$.
Clearly, $\phi(\omega)=3\omega^2$ does not satisfy the reversal
property. Hence (b) is the answer to the posed question.
(c) LTI system
$y(t)=x(t)\;*\;e^{-t}\;u(t)$ has transfer function
$\displaystyle
{\bf H} (\omega)=|{\bf H}(\omega)|e^{j\phi(\omega)}=\frac1{j\omega+1}\;.
$ Hence, the phase response is
$\displaystyle
\phi(\omega)=0-\arctan\left(\frac{\omega}{1}\right)
=-\arctan(\omega).
$
Since the phase response belongs to a viable LTI system, it is not the
response to the posed question
(d) LTI system
$y(t)=\frac{dx}{dt}$ has transfer function
$\displaystyle
{\bf H} (\omega)=|{\bf H}(\omega)|e^{j\phi(\omega)}=j\omega.
$
Hence, the phase response is
$\displaystyle
\phi(\omega)=\pi\;{\rm sign}(\omega).
$
Since the phase response belongs to a viable LTI system, it is not the
response to the posed question.
Test 5.19
A square wave
$\displaystyle
x(t)=\cases{\pi/4 &for $k\pi\lt t\lt (k+1)\pi$\cr-\pi/4 &for
$(k-1)\pi\lt t\lt k\pi$}
$
for integers $k$ has Fourier series expansion
$\displaystyle
x(t)=\sin(t)+\frac1{3}\sin(3t)+\frac1{5}\sin(5t)+\cdots
$
from Example 5-4. Using this, sum the series
$\displaystyle
1+\frac1{3^2}+\frac1{5^2}+\cdots=
$ ?
Solution:
By Parseval's theorem,
$\displaystyle
\frac1{2}\left(1^2+\frac1{3^2}+\frac1{5^2}+\cdots\right)
$ is the average power of $x(t)$,
which can be computed in the time domain as $\pi^2/16$ since
$\displaystyle
|x(t)|^2=\frac{\pi^2}{16}.
$
Then
$\displaystyle
2\;\frac{\pi^2}{16}=\frac{\pi^2}{8}\;.
$
Test 5.20
A square wave
$\displaystyle
x(t)=\cases{\pi/4 &for $k\pi\lt t\lt (k+1)\pi$\cr-\pi/4
&for $(k-1)\pi\lt t\lt k\pi$}
$ for integers $k$ has Fourier series
expansion
$\displaystyle
x(t)=\sin(t)+\frac1{3}\sin(3t)+\frac1{5}\sin(5t)+\cdots
$ from Example 5-4. Using this, compute the integral
$\displaystyle
\frac1{\pi}\;\int_0^{\pi}\frac{\pi}{4}\sin(3t)\;dt
-\frac1{\pi}\;\int_{\pi}^{2\pi}\frac{\pi}{4}\sin(3t)\;dt
$
without computing an integral.
Solution:
Eq. (5.28c) for computing
coefficients $\{b_n\}$ of sine terms in a Fourier series is
$\displaystyle
b_n=\frac{2}{T_0}\;\int_0^{T_0}x(t)\sin(n\omega_0t)\;dt,
$ where here $T_0=2\pi$
is the period and
$\displaystyle
\omega_0=\frac{2\pi}{T_0}=1.
$ So the desired integral is $\displaystyle b_3=\frac1{3}\;$, which agrees with direct
computation.